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Chapter 6

Low-cost materials in gas-phase
adsorption

Ramonna I. Kosheleva,* George Z. Kyzas and

Athanasios C. Mitropoulos*

Hephaestus Advanced Laboratory, Department of Chemistry, International Hellenic University,
Kavala, Greece

*Corresponding author

1. Introduction

Adsorption technology is broadly applied in many fields. Industrial application
of adsorbents is mainly focused on wastewater treatment and water purifica-
tion [1,2], namely for removal of dyes [3,4], heavy metal ions [5,6], and other
compounds, i.e., pharmaceuticals [7]. Comparing available literature for
liquid-phase adsorption with that of gases adsorption, there is a gap for the
latter case, especially concerning the application of low-cost and
environmental friendly materials. A low-cost material is best determined by
the precursor used for its fabrication; some of the criteria considered are its
abundance/availability, the ratio of material obtained per amount of raw
material needed, adsorption capacity, etc. [8] On the other hand, eco-friendly
materials are those that conform with green technology in respect to their
synthesis process as well as their reusability [9]. Many of the aforementioned
aspects are reached by the implementation of carbon-based materials derived
from various sources: biomass [10], wastes of many different
kinds (food waste [11,12], tires [13,14], agro-wastes [15,16], etc.), and others
[17].

Application of adsorbents for gas-phase adsorption is concentrated on toxic
and hazardous gases produced by industrial processes and other sources,
involving human activity. Greenhouse gases are those of high concern due to
the formation of greenhouse effect. According to Intergovernmental Panel on
Climate Change (IPCC), greenhouse effect is the warming process of the
planet’s surface due to radiation retainment by its atmosphere. Climate change
and environmental protection is the number one priority worldwide, while

Advanced Low-Cost Separation Techniques in Interface Science. https://doi.org/10.1016/B978-0-12-814178-6.00006-6
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technologies toward mitigation of greenhouse gas emissions are developing
and upgrading constantly to reach the desired balance [18].

As it was already mentioned, carbonaceous materials are the most common
adsorbents because of their physical and, when modified, physicochemical
properties. Materials such as activated carbon, biochar, and their composites
are of big interest through older and recent history. The presented work has six
sections; an introduction part where the most common carbonaceous materials
(activated carbon and biochar) are briefly presented; the second section in-
cludes adsorbent trends for CO, capture; in the third section the reduction
technologies of acidifying gases (NOx and Sox) are discussed; the fourth
section presents adsorbents used for CHy; the fifth for volatile organic com-
pounds (VOCs), and in the last sections there are conclusions based on the
context of this chapter. Although there are a sufficient number of released
reviews on gas-phase adsorption, most of the works select to discuss adsor-
bents applied for adsorption of one gas at a time, with CO; holding a leading
role. Finally, this chapter provides a summarized overview of updated studies
in respect to carbonaceous materials for gas-phase adsorption with focus on
the main greenhouse gases. Materials for VOCs adsorption are discussed
briefly as well, while at the end of each section there is a table for a quick
overview of recently developed materials.

1.1 Activated carbon

Activated carbon is a well-known material, presenting high surface area,
mechanical stability, and reusability. The common procedure for activated
carbon synthesis is a two-step process: (1) carbonization of the precursor and
(2) activation of the resulted char [19]. There are many cases, that activation
step is completed along with carbonization, so we have only one-step pro-
cess. Most of the cases of the latter, activation that takes place is a physical
one with thermal treatment at a selected gas atmosphere (i.e., activation with
CO,), while when chemical activation is selected, the process performed is
usually a two-step one [20]. The obtained properties of the final material are
related to many parameters. For example, both nature of the precursor and
synthesis conditions have a crucial impact on the resulted characteristics of
adsorbent [6,21]. One of the most important factors that affect surface
properties of the activated carbon were found to be carbonization and/or
activation temperature like literature suggests. In Fig. 6.1, one can realize the
role of carbonization temperature on the evolution of pores at wood-based
activated carbon surface. The pore structure of activated carbon is usually
micropore-dominant, a fact that makes it a strong candidate for gas-phase
adsorption [22].

Modification of activated carbon surface can lead to improvement of
adsorption, mechanical, and other properties of the material. Modification is
accomplished by introducing functional groups onto the surface resulting in
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FIGURE 6.1 SEM micrographs of wood-based activated carbon at different carbonization
temperature with H3PO, impregnation ratio of 4 at (A) 300°C, (B) 400°C, (C) 500°C and (D)
600°C [23].

chemical properties alteration, hence achieving higher adsorption capacity of
the target adsorbate [24,25].

1.2 Biochar

In contrast to activated carbon, biochar is commonly produced after slow
pyrolysis usually at low temperature and total absence of oxygen [26,27].
Additionally, a recent trend is hydrothermal treatment of biomass, concluding
in the so-called hydrochar. Hydrochar production process offers some signif-
icant advantages over the former; no necessary drying of biomass, no emis-
sions, and by-products compared with pyrolysis as well as higher carbon yield
are some of them [28]. As it is shown in Fig. 6.2, structural characteristics of
biochar differ from those of hydrochar.

In fact, biochar used as adsorbent gains popularity among other carbona-
ceous materials. Biochar is considered to cost less than activated carbon while
having superior performance even for gas-phase adsorption [29—31]. As it is
common for all pyrogenic materials, synthesis parameters are those that have
the key role of the overall adsorbent performance. Like activated carbon,
biochar can be modified by various chemicals in order to reach ultimate
quality and/or specific application requirements [32,33].
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20 pm

FIGURE 6.2 SEM micrographs of (left) biochar and (right) hydrochar. Reprinted with permis-
sion by Elsevier from J. Fang, L. Zhan, Y.S. Ok, B. Gao, Minireview of potential applications of
hydrochar derived from hydrothermal carbonization of biomass, J. Ind. Eng. Chem. 57 (2018)
15—21. doi: https://doi.org/10.1016/j.jiec.2017.08.026.

2. Carbon dioxide (CO,) capture

Carbon dioxide is a greenhouse gas that comes first regarding its production
rate and total emission amounts worldwide. According to Environmental
Protection Agency (EPA) and reports from other related sources, CO; holds
76% of the greenhouse gas emissions. The majority of CO; is emitted from the
agricultural sector and industrial processes such as power production. Due to
global warming and its ever increasing trend, there have been developed CO,
capture and sequestration technologies [34], involving trapping, transportation,
and its long-term storage. Adsorption is one of the most common methods for
both trapping and storage of the emitted CO,. Although CO, storage refers to
storage in geological formations, trapping of CO, is achieved by adsorption
onto synthesized materials such as MOFs, modified zeolites, and various
membranes. The particular step of CO, capture (trapping) can take place at
different stages of CO; production/emission cycle; such options include (1)
precombustion, (2) postcombustion, (3) oxy-fuel, and (4) CO, capture from
the air stream prior to combustion process.

As was mentioned before, many materials have the potential to be an
effective adsorbent with high CO, uptake. However, the implementation of
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some of them has restrictions regarding performance under specific operation
conditions [35], the vapor content of the stream [36,37] and the overall cost
estimation [38]. Adsorption of CO, by carbon-based materials is the most
promising approach especially in terms of cost-effectiveness and adsorption
efficiency. Numerous studies have been conducted regarding carbon-based
materials for the specific purpose, suggesting new synthesis processes
[39,40] and materials or enhancing material properties by surface modification
[41,42]. One of the most important cost reduction parameters of any kind of
adsorbents is the abundance of their precursors. Carbonaceous materials can
be derived from many sources including waste materials, resins, used tires
[43], and many others, presenting good stability [44,45], fast kinetics [35], as
well as reusability [46].

From the very early stage of industrialization, the most common adsorbent
for industrial use was activated carbon. Until recently, activated carbon was
preferred for processes such as wastewater treatment [47,48]. Although acti-
vated carbon has a poor adsorption performance of gaseous phase, modifica-
tion of its surface in numerous ways is currently been studied. The interest to
this approach comes from the fact that activated carbon has a low cost, and it
can be manipulated easily in order to reach the required properties also in a
relatively low cost [49].

Sea mango was the precursor of the synthesized activated carbon for CO,
adsorption studied by Ali et al. [50]. The produced material was activated
chemically by phosphoric acid (H3POy4), while a portion of the resulted ma-
terial was treated further with various amines following Box—Behnken Design
and the surface area was modified. During the synthesis, factors such as
temperature for sea mango carbonization and H3PO,4 concentration of acti-
vation process were investigated as well. After optimization of the mentioned
conditions, both cases (modified and virgin activated carbon) were tested for
CO; uptake capacity. After amine impregnation, materials were evaluated
regarding common adsorption parameters and their performance in a bed
column. As it was expected, amine groups blocked some of the pores of the
activated carbon, leaving functional groups proper not only for efficient CO,
adsorption but also for regeneration ability. The activated carbon that had the
best performance in the bed column was modified with AMP amine resulting
in adsorption bed capacity of 23.05 mg CO,/g of the material.

Another emerging technology for efficient CO, uptake is the modification
of activated carbon surface by developing nitrogen active sites [51]. Nitrogen-
enriched carbonaceous materials present superior properties of adsorption
capacity due to added functional groups that contribute to the polarization of
CO; molecules [52]. In a study, conducted by Yami et al., of carbon material
from coconut shell, nitrogen doping of the derived activated carbon provided
remarkable textural and surface properties to the final material [46]. The
material was activated chemically by KOH, and its performance was investi-
gated for a fixed-bed column. As it is reported, adsorption properties were
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enhanced due to surface modification reaching a CO, ultimate uptake of
4.23 mmol/g of the material under mild operation conditions. Parameters that
affected the CO, adsorption capacity found to be the initial concentration of
CO,, the temperature as well as the flow rate of the stream. Besides the good
performance, the final material showed good stability after 20 adsorp-
tion—desorption cycles, indicating its reusability. A recent work of Man-
muanpom et al. [53], investigated the CO, capacity of activated and
nonactivated carbons. Specifically, both sample series were produced by
carbonization of polybenzoxanine at a temperature of 800°C, while for acti-
vated samples a further physical activation under CO; at 900°C was followed.
As it was revealed, activated carbon samples presented a higher specific sur-
face area compared with that of nonactivated ones. In addition, XPS analysis
showed N-sites onto the structure of the material. The adsorption capacity of
the samples was investigated at different temperatures (from 30 to 50°C) and
pressures (from 1 to 7 bars). The highest CO, uptake (3.59 mmol/g) was ob-
tained for samples examined at a combination of 30°C and 7 bar, where the
samples had the highest surface area and micropore volume. The overall good
performance of the nitrogen-enriched carbons was attributed to both textural
properties due to activation process and chemisorption mechanism induced by
formed N-sites.

Coconut shell, in a study conducted by Yue et al., was used as precursor for
porous carbon production by chemical activation [54]. In this work, coconut
shell was urea-modified and activated by K,COs after the carbonization pro-
cess. Again, samples were examined regarding their CO, capacity at two
different temperatures (0 and 25°C) keeping the pressure at 1 bar. Results of
the experiment showed that the decrease in temperature leads to increase of
CO; uptake, hence at 0°C 1 g of sample could adsorb up to 5.12 mmol
compared with 3.71 mmol/g at 25°C. Interestingly, findings of simulation-
based investigation of CO, adsorption capacity revealed that besides
nitrogen content and microporosity of the adsorbent, the distribution of the
micropores also plays an important role in material’s CO, capture capacity at
mild conditions.

Similarly, a detailed characterization of KOH- and NaOH-activated car-
bons [55] support the outcomes of the aforementioned study. Argan fruit shell,
this time, was carbonized and then chemically activated with the mentioned
acids. The conditions of CO, uptake measurements were 1 bar and 25°C as
previously. Once more, the high N content along with large surface area of
narrow micropores domain reached a CO, uptake of 5.63 mmol/g, a value
close to the previously presented one at same conditions. The comparison of
the two cases can lead to the conclusion that micropore structure and signif-
icantly high nitrogen content are indeed the two major factors of carbonaceous
material CO, capture performance.

It is widely accepted that, except activation conditions and surface modi-
fication, the performance of a material is also attributed to its form. For
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example, there are comparative studies upon powdered and activated fiber
forms, suggesting that activated carbon fibers have advantage over the powder
form for reasons of packing density [56]. Activated carbon fibers can be
produced from any fabric waste or synthesized from various precursors; woven
cotton [57] and denim [58] waste, poly(acrylonitrile) (PAN), and other
synthetic polymers [59] can be the raw material for carbon fibers
manufacturing.

Carrott et al. conducted a study investigating the effect of a preoxidation of
industrial acrylic fibers on structural properties of the final activated carbon
fibers [60]. In this work, high carbon yield during carbonization of acrylic
fibers was achieved by prior oxidation of the precursor. This approach resulted
in maximization of carbon content at the stage of carbonization and mini-
mizing the reaction of the char with CO, at activation stage. A BET surface
area of 2064 m?/g and total pore volume of 1.15 cm>/g were achieved under a
controlled range of activation temperature and time. The temperature range as
well as the activation time influenced dramatically the microstructure of the
material providing a wide range of porosities, from ultramicropores to pores of
4 nm in size. However, N; adsorption and consequent CO, adsorption analysis
revealed that the samples with ultrafine micropores which are well developed
and distributed at lower activation temperatures had the highest CO, uptake
(2.1 mmol/g) reaching even CO; capacities obtained from chemically acti-
vated carbons measured at same conditions. Chemically activated industrial
sisal fiber was used for investigating the effect of carbonization parameters on
the surface characteristics of the final carbonaceous material [61]. Although
this study was not conducted for examining CO, capacity, it is interesting to
notice that parameters such as N2 flow rate and carbonization temperature and
time have the opposite effect; higher temperature and longer hold time develop
higher BET surface area and pore volume, whereas higher N, flow rate has
negative impact on the aforementioned properties.

Enhancement of activated carbon fibers properties over CO; capacity was
done by nitrogen-enriched carbon nanotube (CNT) growth onto PAN-derived
fibers. This attempt conducted by Chiang and his coworkers [52] resulted in
spaghetti-like and randomly oriented CNT grafted to activated carbon fibers.
For comparison reasons, a portion of used fibers were immersed to a cobalt
acetate solution prior CVD process for CNT growth. Fig. 6.3 shows the results
of each treatment.

The above figure, Fig. 6.3, presents clearly the effect of preimmersion of
activated carbon fiber on the resulted CNTs sizes. According to authors, im-
ages b and c reveals the remaining particles of the used catalyst, a fact that
indicates the low reaction of the catalyst with the surface of the fibers while the
open pore end is attributed to catalyst particle falling-off during CVD process.
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7 A §
FIGURE 6.3 FESEM micrographs of (A) activated carbon fibers as-received, (B) carbon
nanotube (CNT)-grafted activated carbon fibers, and (C) immersed to cobalt/acetate solution
CNT-grafted activated carbon fibers. Reprinted with permission by Elsevier from Y.-C. Chiang, R.-S.
Juang, Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review, J.
Taiwan Inst. Chem. Eng. 71 (2017) 214—234.

Spherical form of activated carbon has shown superior properties over
various applications: high mechanical and thermal stability, better packing,
surface smoothness, and pore manipulation are some of them [62].

Nitrogen- and sulfur-enriched spherical activated carbon were prepared by
Sun et al. as CO, adsorbents [62]. Spheres of some millimeters in size were
synthesized by a three-step process via final chemical activation. Resin of poly
(styrene-vinylimidazole-divinylbenzene) was first HySO4-sulfonicated, carbon-
ized, and finally activated with KOH. The sterene and nitric components of resin
at different ratios were the sources for carbon and nitrogen, while H,SO,4 and
KOH were responsible for simultaneous cross-linking and sulfur-enriching the
surface thermally. The as-prepared sample with the higher sterene/
N-vinylimidazole ratio (1:0.75) had the best performance at different operation
conditions for CO, adsorption affected by the concentration of N-sites.
Remarkably, obtained comparative results at different operation pressure
revealed that at lower pressure the efficiency of adsorption was due to surface
chemistry, while at increased pressure the mechanism was better attributed to
microporosity. Finally, authors concluded that the suggested adsorbent has good
potentials for CO, capture due to enhanced properties of regeneration stability
and fast kinetics at various operation conditions (Table 6.1).



TABLE 6.1 The most recent studies of adsorbents for CO, capture.

Adsorbent

Porous carbon xerogels

Three-dimensional porous
carbon frameworks

Heteroatom-doped
hierarchically porous
carbons

N-doped porous carbon

Activated carbon

Activated carbon

Porous carbons

N-doped nanoporous
carbon

N-doped active carbon

Nanoporous carbons

Precursor

Resorcinol-formaldehyde-
phloroglucinol gels

Mangosteen peel

Glucose hydrogels

Imidazole-based hyper-
cross-linked polymers (hcps)

Date seeds

Wood sawdust

EFB biomass

Walnut shell

Chitosan

Cigarette butts

Carbonization

900°C

700°C

600—1000°C

600—900°C

400°C

600 or 800 C

600°C

550 C
600 C

Activation

KOH

KOH

KOH

Physically
activated

H3PO4,
NaOH, and
KOH

KOH

KOH

KOH
KOH

Uptake
2.89 mmol/g

6.93 and 4.77 mmol/g (0 and
25°C)

4.4 mmol/g

180—258 mg/g (273 K,
1.0 bar)
4173 mg

141.14 mg

0.96 mol/kg

5.184, 3.712, and
2.343 mmol/g

7.42 mmol/g 14.03 mmol/g
(1 and 10 bar, respectively)

1.86 mmol/g
6.0 mmol/g

References

[63]

[64]

[65]

[66]

[67]

[68]

[68]

[69]

[70]

[71]
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3. Acidifying pollutants (NOx, SOx)

Nitrous oxides, sulfur oxides, and their derivatives are indirect greenhouse
gases. Although NOx comprises only 6% of the total greenhouse gases
emissions, they are responsible for phenomena such as acid rain and smog
[9,72]. In addition, photo chemical reaction of NOx in the atmosphere leads to
the production of tropospheric ozone [12]. The main sources of all acidifying
pollutant emissions are internal combustion engines (road transport) with 13%
[11], energy production 28%, while the agriculture sector have the 27% of the
total share. Emissions of NOx and SOx from on-road sources have been
reduced significantly by the implementation of clearer fuels and more efficient
catalysts [10,15]. However, there is still space for emerging technologies or
improvement of existing ones for NOx and Sox reduction by adsorption in
other sectors. Nitrogen oxide emissions, and especially that of N,O resulting
from agricultural activities, are suppressed by soil enrichment with various
substances known as amendment [73]. In general, soil amendment is a sub-
stance added to soil in order to improve textural properties [74], fertilization of
soil [75], etc.

Biochar is the most common soil amendment for N,O reduction and soil
chemical stabilization [76]. Biochar is produced by pyrolysis of biomass at
total or partial absence of oxygen [27]. Biochars present excellent physical and
chemical properties such as high surface area, well developed porosity, high
sorption capacities, etc. Surface structure properties are influenced massively
by conditions of the synthesis process; Fig. 6.2 shows the effect of carbon-
ization temperature on porosity development of wood biomass after slow
pyrolysis [77].

Many studies have been conducted for examining the adsorption capacity
of produced biochars for the specific purpose. Although biochar is extensively
used in soil with great benefits, regarding its role as a good adsorbent of N,O
very few works have been presented. For determination of the importance of
biochar adsorption capacity, adsorption measurements of N,O onto wood-
derived biochar were conducted by Xiao et al. [78]. At this work, wood bio-
mass—based samples were prepared by anaerobic pyrolysis at a temperature
range from 300 to 700°C. After carbonization, samples were further heated in
the presence of air at 400°C. Adsorption measurements of CO, were con-
ducted, and surface area was determined correlating well with Langmuir ca-
pacity. Furthermore, simulated pressure conditions in soil were used in order to
investigate if adsorption—desorption properties of chars are influenced by char
coating with soil matter. The results revealed that coating does not affect
sorption characteristics of the biochar which take place in the developed mi-
cropores; therefore a biochar concentration of 1% in the soil could have great
potentials to retain N,O.

Nitrogen oxide and sulfur oxide adsorption by activated carbon have been
reviewed with focus on surface properties and consequently required char
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treatment processes to reach the desired adsorption capacities [79—81]. One
example of surface chemistry importance is provided by Ghouma et al. [82].
This study investigates three samples of activated carbons derived from
agro-industrial wastes and prepared by both chemical and physical activation.
Nitrogen oxide (N,O) capacity onto the as-prepared samples was investigated
at ambient temperature in a fix-bed column with low N,O flow rate. The
findings of this study revealed that chemically activated carbon has greater
N,O uptake at those conditions than the physically activated one. This result
indicates that functional groups present on the surface of the material have a
key role in N,O adsorption mechanism. Furthermore, authors suggest that pore
structure has also a crucial role regarding N,O diffusion rates. Therefore, as
activated carbon prepared by H3PO, activation presents a mesoporous surface
structure, N,O is diffused more efficiently compared with CO,-activated
samples.

Adsorption of NOx and SOx, from flue gas at the same time, onto acti-
vated carbon monoliths supporting metal oxide group (CO304) was inves-
tigated [83]. The scope of Silas and his coworkers’ study was to investigate
the contribution of the deposition precipitation, pore volume impregnation,
and hydrothermal methods to the efficiency of as-synthesized materials. The
outcome of this research was that hydrothermally prepared samples showed
higher adsorption capacities of the two target gases than those prepared
differently; with an uptake of 123.1 and 130.2 mg/g of SO, and NOx,
respectively. According to the obtained results of breakthrough curves
(Fig. 6.4), material performs higher efficiency for NOx adsorption attributed
to its physicochemical properties as well as experimental conditions
(Fig. 6.5).

Additionally to the previous analysis, reusability of adsorbents was eval-
uated after two cycles of adsorption/regeneration. The reduction of adsorption
capacity both for NOx and SOx was minor, while the regeneration efficiency
was kept above 94% for both samples after the total two cycles.

4. Methane separation

Although CO; is considered the main culprit gas for global warming, CHy4 is
also a potent greenhouse gas. According to EPA, CHy has a 14% of greenhouse
gas emissions with the majority derived from agricultural and energy sectors.
Separation technologies are usually studied in respect to CH, separation from
a mixed gas stream in natural gas refining processes. The most common
technologies applied for this purpose are pressure swing adsorption, temper-
ature swing adsorption, vacuum swing adsorption, or the vacuum pressure
swing adsorption [84]. Various adsorbents are used in the referred methods
including MOFs [85], zeolites [86], silica-based, and others. Carbonaceous
materials are often utilized in the aforementioned processes for efficient gas
mixture separation [85,87,88].
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100 jym ™

FIGURE 6.4 SEM micrographs of (A) wood biomass and (B) carbonization at 350°C, (C), at
450°C, and (D) at 550°C. Reprinted with permission by Elsevier from Z.Z. Chowdhury, M.Z.
Karim, M.A. Ashraf, K. Khalid, Influence of carbonization temperature on physicochemical
properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) Sawdust, Bio

Resour. 11 (2016).
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FIGURE 6.5 Breakthrough curves of simultaneous (A) NOx and (B) SOx adsorption onto hy-
drothermally derived adsorbent. Reprinted with permission by Elsevier from K. Silas, WA.W. A. K.
Ghani, T. S.Y. Choong, U. Rashid, Breakthrough studies of Co304 supported activated carbon
monolith for simultaneous SO2/NOx removal from flue gas, Fuel Process. Technol. 180 (2018)
155—165. doi: https://doi.org/10.1016/].fuproc.2018.08.018.
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4.1 CH4/CO,

The selection of the adsorbent in use is a matter of the (1) gas nature, (2)
composition of the gas mixture, (3) operation conditions, and (4) thermody-
namics of the system (kinetics, equilibrium, time, etc.). Four types of activated
carbon were compared with zeolites regarding CO, removal from different gas
mixtures. Experiments were conducted in order to evaluate adsorption
performance of both types and their efficiency under a range of operation
conditions. The degradation of material was examined as well. Activated
carbon examined showed better characteristics over zeolites especially for
reusability.

Gas binary mixtures of CO,, CHy, and N, selective adsorption on carbon
materials derived from starch sugar were studied by Wang et al. Four glucose-
based carbons were synthesized differentiating in KOH/C ratio (2:1, 3:1, 4:1,
and 5:1). Isosteric heat of adsorption for each gas was obtained by several
techniques. Nitrogen adsorption revealed that the optimal from the as-prepared
material was that with KOH/C ratio of 4:1; high surface area, and high CO,
uptake reaching capacities even of best MOFs (3153 my/g and 22.4 mmol/g,
respectively). In addition, the KOH concentration seems to play a highly
important role on surface chemistry of the resulted materials. Given the
example of the presented study, at KOH/C from 2 to 5, pore structure was
developing accordingly as it is depicted in Fig. 6.6. The selectivity of the
adsorbents was estimated by ideal absorbed solution theory, predicting high
selectivity rates at 30 operation pressure of binary gas mixtures. The outcome
of this study promotes the implementation of this kind of materials as efficient
adsorbents for CHy separation from gas mixtures.

-Carbon layer
L -Mesopore

Cu nanoparticles

Depleted carbon layer
< Micropore

~Electrospun PAN

~ Cu(ll)acetate Cu/cu,O nanoparticles

Electrospinning Carbonization Activation

FIGURE 6.6 Schematic representation of Cu-/CuxO-modified activated carbon fiber composites
synthesis process. PAN, poly(acrylonitrile). Reprinted with permission by Elsevier from B. Bajaj,
H.-1. Joh, S. M. Jo, J. H. Park, K. B. Yi, S. Lee, Enhanced reactive H2S adsorption using carbon
nanofibers supported with Cu/CuxO nanoparticles, Appl. Surf. Sci. 429 (2018) 253—257. doi:
https://doi.org/10.1016/j.apsusc.2017.06.280.
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4.2 CH4/H,S

Hydrogen sulfide (H,S) causes major health problems when one is exposed
even to relevantly low concentration. Eye and skin irritation, breathing diffi-
culties, and loss of odor are some of the symptoms after the exposure. Ac-
cording to Occupational Safety and Health Administration (OSHA), H,S
causes asphyxiation and has serious effect on human nervous system, that is
why H,S removal/adsorption technologies are in the prime line of investiga-
tion. Furthermore, H,S concentration in a natural gas stream may cause sig-
nificant damage to piping network and natural gas treating units [89].

Selectivity along with adsorption capacity of an adsorbent is paramount for
optimal efficacy of any chemical process. Regarding H,S, the most common
applied materials for adsorption methods are zeolites [84], MOFs [90], and
various carbon materials. Because H,S has low affinity to carbon, modification
of the derived carbon material is promoted by researchers of the field [91].

In the previous section of this chapter, it was mentioned that carbonaceous
materials in fiber gain an increasing interest due to its advantages. Also, it was
mentioned that further modification of adsorbents surface is preferred in most
of the cases. As an example for these two, utilized by a recently developed
methodology of electrospinning, the work of Bajaj et al. is discussed [92]. This
team used activated carbon fibers and modified the surface with nanoparticles
of Cu/CuxO. As source material, electrospun PAN/copper fibers were used.
After carbonization process, the produced composite was activated at mild
conditions. Schematic representation of the synthesis steps is clear and
comprehensive as it is seen in Fig. 6.7.

The as-synthesized material was a result of electrospinning PAN stabilized
under air at 280°C. The following steps include carbonization in nitrogen-rich
environment at elevated temperature (1100°C) and activation at 190°C in O; as
the final step. Surface elemental characterization was conducted by XRD and
XPS, while SEM and TEM were used for structural properties. Character-
ization analysis indicates the presence of Cu/CuxO onto the carbon fibers.
Measurements of H,S uptake were conducted at 300°C in a fixed column bed.
Pure activated carbon fibers were subjected to the breakthrough time mea-
surements as well. The amount of nanocomposite used was half of the amount
of pure fibers. The experiment stopped when H,S concentration reached
50ppm (from 761ppm). Finally, the presence of Cu enhanced the adsorption
capacity by many times compared with pure activated carbon fibers, sug-
gesting their potential for H>S adsorption applications.

5. Volatile organic compounds

VOCs is an umbrella term for any compounds, according to the European
Union, that has an initial boiling point below 250°C. Emissions of VOCs,
besides industrial processes, are produced from many every day activities.
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FIGURE 6.7 SEM micrographs of PCBs, from top to bottom; PCB-1 to PCB-5. The presentation
of each sample includes surface and cross sections at different magnifications (from left-hand to
right-hand side). Reprinted with permission by Elsevier from J. Qi, J. Li, Y. Li, X. Fang, X. Sun, J.
Shen, L. Wang, Synthesis of porous carbon beads with controllable pore structure for volatile
organic compounds removal, Chem. Eng. J. 307 (2017) 989—998. doi: hittps://doi.org/10.1016/].
€ej.2016.09.022.

Compounds of this category cause harm not only to plants and animals but to
human in the long term [93]. Moreover, VOCs contribute to climate change
significantly through ozone formation [94] and smog [72] as NOx do. Tech-
nologies for VOCs limitation and management can be divided in two cate-
gories: destruction and recycling. Although the efficiency of the former is at a
satisfying level, it requires massive energy consumption. The latter option
includes absorption, adsorption, separation, and condensation. Photocatalysis
is one of the most studied cases concerning air purification especially for in-
door application, while adsorption onto materials for large-scale units is
among the emerging technologies [95,96].

In many cases regarding industrial applications, spherical shaped adsor-
bents are preferred. Superior mechanical and surface properties of
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carbonaceous spheres have attracted recently the interest of scientific com-
munity. In an experimental work of Qi and coworkers, beads of porous surface
structure were synthesized by phase inversion method [97]. After phase
inversion, the as-produced polymeric samples were carbonized. Beads were
derived from four different polymers, namely PES, PSF, PAN, and PVDF. For
achieving the desired shape, the resulted solution was introduced via a syringe
to a coagulation bath with deionized water and iso-propanol mixture at
different ratios (from pure water to 40:60, with a composition change step of
10). The different water/iso-propanol ratio contributed both to the size and to
the microporosity of the beads. After this, oven drying was accomplished as an
intermediate step prior to carbonization at 350°C and further at 950°C at
nitrogen-rich environment. The as-prepared beads were designated regarding
the order of ratio increase, so we have PCB (porous carbon beads)-1, PCB-2,
PCB-3, PCB-4, and PCB-5 (where 1 is for 0:100 and so on). As it is observed
in Fig. 6.6, the best structure was developed on samples of 10:90 (PCB-2)
water/iso-propanol.

The optimized coagulation bath ratio provides materials with high surface
area of 1166 m*/g as well as good adsorption capacity of benzene (1.467 g/g),
toluene (1.229 g/g), n-hexane (0.600 g/g), and acetone (0.770 g/g). The almost
unchanged performance of the material after six cycles of sorption process
promotes its application for VOCs treatment.

Regeneration efficiency of an adsorbent plays a crucial role in the overall
performance estimation. Especially for industrial applications, high thermal
and mechanical stability are the main criteria. To this direction, studies of
desorption method applied for regenerating a specific adsorbent, after having
adsorbed a specific compound, are very important for process optimization
[86,98]. Among other properties, desorption of benzene and toluene from
reduced graphene oxide was investigated [99]. In specific, graphene oxide and
its reduced form was synthesized from graphite following a slightly altered
Hummer’s method. Although the interlayer space of the sheetlike structure of
the graphene oxide was found to be higher, reduced graphene oxide possesses
a higher surface area of 292.6 m*/g over 236.4 m*/g of the former. Experi-
ments conducted for benzene and toluene uptake capacities of the reduced
graphene oxide showed values of 276.4 and 304.4 mg/g, respectively. Finally,
the regeneration efficiency of the adsorbent was examined, and it was deter-
mined that reduced graphene oxide can be fully regenerated at low tempera-
tures (150°C).

In general, separation techniques require more strong chemical bonds be-
tween the adsorbate and the adsorbent. Surface modification and/or chemical
activation are the most common approach to improve original material’s
chemical properties. Table 6.2 summarizes carbon-based materials for (1) CHy
separation from gas mixtures, (2) H,S rementation and VOCs reduction by
adsorption.



TABLE 6.2 Summary of carbon-based materials for various greenhouse gases (with exception of CO,).

Adsorbent

N-doped activated carbon

Activated carbon

Activated carbon fiber

Monolithic tubular
activated carbon

Activated carbon

Activated carbon

N-doped carbon

Activated carbon

Activated carbon cloth

Activated carbon

Precursor

Chlorella, isochrysis, and
Platymonas subcordiformis

Lignin

Mesophase pitch fiber, acf

textile kynol acf-15
(nippon kynol)

Cotton stalks

Corncob wastes

Gingko leaf and peanut
shell

Crab shell

Cherry stones

Viscose rayon cloth

Coconut shell

Carbonization

500°C
800°C

800—1000°C

Ac-p 400°C
Ac-z 600°C

350, 400, 450,
550, and 650°C

800°C

600—900°C

630°C

1173K

Activation

KOH
CO,/H,0

Phosphorous
acid and zinc
chloride
chlz

N,

N,/CO,

CO,
CO,

CO,

Uptake
7.27 mmol/g

600 mg/g

Toluene 59.6 g/100 g
Ethanol/methanol
54.4/49.2 g/100 g

328 mg/gwet258 mg/g
dry 221 mg/g wet

414.6 mg/g
3000 mg/m (25 °C)

COz, CH4, and Nz
2.13/0.64/0.2 mmol/g,
3.63/1.38/0.45 mmol/
g, 2.26/0.89/

0.31 mmol/g, 1.62/
0.45/0.17 mmol/g

6.8 mmol/g
2.49 mmol/g

2.68 mmol/g or
10.55 wt% 0.99 mmol/
g or 1.56 wt%

6.0 mmol/g
4 mmol/g

Application
CO,/CH,4

VOCs

VOCs

VOCs

VOCs

CO,, CHy,

CH4/N,,
CO,/N,

CO,/CH,
CO,/CH,

CO,/CH,4

Ref.
[100]

[96]
[101]

[102]

[88]

[100]

(871
[104]

[105]
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6. Conclusions

This chapter reviews all the recent literature on carbonaceous materials for
gas-phase adsorption. The increased concern on climate change and its irre-
versible impact on the planet induced the scientific research toward environ-
mental protection technologies. Aspects that accord with eco-friendly
processes utilization involve the implementation of technologies for gas pu-
rification and clean energy consumption, toxic and hazardous gas reduction,
greenhouse effect mitigation, and so on. Up to the very recent history,
adsorption was linked with decontamination technologies of liquid phase.
Nowadays, adsorption seems to have a key role in the mentioned emerging
technologies with high level of efficiency for gas-phase applications. However,
the selection of the proper adsorbent is a multicriteria decision: cost efficiency,
physicochemical properties, and mechanical properties are some of the most
important. In the perspective of all mentioned parameters, and especially cost,
carbon-based materials have gained popularity. Carbonaceous materials can be
derived from a wide range of precursors resulting with high surface and good
stability properties. The performance of each adsorbent depends mainly on
factors such as the source, the synthesis process, and surface chemistry. The
latter is easily adjusted by surface modification techniques. The present work
encloses studies of gas-phase adsorbents with potentials for large-scale ap-
plications. In addition, to best of our knowledge, this is one of the few works
that reviews the performance and properties of carbon-based material for
several different greenhouse gases. At this point, it should be noticed that the
number of published studies upon CO, is disproportionate regarding the
existing literature for other harmful gases, and further research is suggested
toward this direction.
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