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Chapter 1

The impact of raw materials
cost on the adsorption process

Despina A. Gkika,a,b,c,* Nick Vordos,b,c Efstathios V. Liakos,c

Lykourgos Magafas,a,b Dimitrios V. Bandekas,b

Athanasios C. Mitropoulosc and George Z. Kyzasc
aElectrical Engineering Department, Eastern Macedonia and Thrace Institute of Technology,

Complex Systems Lab, Kavala, Greece; bElectrical Engineering Department, Eastern Macedonia

and Thrace Institute of Technology, Kavala, Greece; cHephaestus Advanced Laboratory,

Department of Chemistry, International Hellenic University, Kavala, Greece

*Corresponding author

1. Introduction

Recently, the “12 Principles of Green Chemistry” [1] have been more widely
adopted and have been preferred over conventional methods. It has been used
to a high extent for industrial separation and purification, ensuring that ad-
sorbents are created in optimal conditions so that the optimal characteristics
are expressed. The advantages of green synthesis include its cost-effectiveness,
environment friendliness, scalability, and lack of requirement for extreme
conditions like high pressure, energy or temperature, or the need to utilize
toxic chemicals [2].

Organic dyes are a major type of water pollutants that may have severe
environmental effects due to being highly toxic and may cause cancer [3,4].
Dyes are not easily degradable due to their stability and properties [5,6].
Multiple efforts have been made to address the issue of dye removal from
wastewater systems, such as ion exchange, extraction of solvents, adsorption,
use of filters, coagulation-flocculation, advanced oxidation and electro-
chemical methods [7e12]. Adsorption is one of the preferred methods because
its operation mode is simpler and easier and it has little to none by-products
compared with other methods [13]. As a result, the research on new and
more effective materials has been getting more focus by scientists worldwide
[13e16].
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A variety of methods have been utilized to address dye residues, including
coagulation, irradiation, photocatalytic oxidation, and more. Adsorption is a
cost-efficient and easy-to-apply method for the removal of existing dyes [17].
Physicochemical and biological processes are utilized for dye treatment in
polluted wastewater [18]. The most common methods are coagulation-
flocculation [19] and advanced oxidation process [20]. Nevertheless, such
options are costly and have other operational issues, such as toxic by-products,
lower removal effectiveness, and requirement for better matches to specific
group of dyes [21].

The adsorption process is frequently used for the treatment of organic
pollutants owing to its simplicity, performance, lack of sensitivity to toxic
materials, and scalability [22]. Adsorption is considered to be better than
alternative options for water reuse based on starting costs, clean design, and
insensitivity to toxic substances [23,24]. Adsorption can be used either in
single or combinational mode for partial or total wastewater cleaning.
Recently, different, cheaper materials, such as biosorbents, industrial and
agricultural waste, zeolite, silicon, and clays, have been tested as adsorbents at
the third stage of waste treatment, thus replacing activated carbon (AC)
[25e28].

2. Market trend for various adsorbents

Fig. 1.1 presents a comparison of the market trends and future projections for
different adsorbents. There is a big increase in market size, with chitosan and
activated carbon displaying the highest rise individually.

Activated carbon. The AC market might be split into different categories,
including powdered, granular, and palletized, depending on the final product
form. The high demand for powdered AC in applications such as decolor-
ization and deodorization in pharmaceuticals is likely to enhance the market
growth [29]. According to Statistics MRC, the global activated carbon market
reached about $4.12 billion in 2017 and is anticipated to go beyond $14 billion
by 2026 [30,31,32].

Chitosan. The global chitosan market report explores chitosan and its
most common applications such as water treatment, cosmetics, food, and
pharmaceuticals, among others. The most significant driver of the chitosan
market is the abundance of the source material along with developing
applications in various fields [33]. The size of the global chitosan market is
expected to surpass $2500 million by 2022, compared with $1205 million in
2015 [34].

Graphene. Graphene is a carbon allotrope that contains graphite and
diamond. The most common graphene types that form the market include
graphene oxide; nanoplatelets; mono-, bi-, or few-layer graphene. The global
graphene market is expected to achieve a noticeable growth of more than 811
million USD by 2023 [35e37].
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3. Activated carbon efficiency

ACs stem from natural materials like wood and coal, which renders their
production and regeneration process quite high in price [38,39]. Many sci-
entists have thus researched potential alternate low-cost adsorbents production
processes. AC has been suggested as an adsorbent because of its structure and
large surface which make it a great candidate for the removal of organic
pollutants (including hard biodegradable ones) from aquatic environment. It is
considered as one of the most efficient adsorbents and is used widely due to its
nontoxicity for purifying drinking water and treating wastewater [22]. More
specifically, AC’s efficiency in removing a large variety of dyes from waste-
waters has rendered it an excellent option when compared with more expen-
sive alternatives [40].

AC is commonly retrieved from substances with high carbon content. Its
adsorption ability is affected by its porous structure and surface area, which
can be adjusted, thus making AC suitable for a wide application range,
including pollutant removal and catalyst support. AC is not cheap, and the
better the quality, the higher its cost. All methods of spent carbon
regeneration, however, are costly, are impractical, or result in further waste
discharge [41], despite its efficiency as adsorbent [42]. Despite its multiple
applications in cleaning processes, AC is still quite costly. Commercial AC is
limited due to cost, lower performance, as well as efficiency after
regeneration [43].

FIGURE 1.1 Trends and future projections for different adsorbents.
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So far, natural adsorbents, such as chitin, biomass, and chitosan, as well as
industrial and agricultural waste have been for the treatment. Bioadsorbents
are considered more selective, less costly, and more effective than resins and
commercially activated carbon [44]. Carbon-based materials are widely used
in dye removal processes [13]. During the past few years, graphene-based
materials have been tested in various areas, due to attributes that make them
ideal candidates, such as physicochemical, optical, and other properties [45].
Recently, they have been successfully tried as alternative adsorption options
[46,47]. Graphene is, however, costly and not too easy to produce; therefore
significant efforts are dedicated toward finding cheaper yet still effective ways
to take advantage of graphene and related materials. Graphene oxide (GO) is
one such material created by graphite oxidation [48]. Graphene oxide has
shown remarkable adsorption abilities compared with other carbon-based
materials and thus has an important role in wastewater treatment. Further-
more, due to its comparatively high surface area (2630 m2/g), it has received
even more attention [49]. Graphene oxide may assist in removing cationic
metals and dyes due to its negative charge density. Graphene oxide sheets are
made of a single-layered graphite structure connected with oxygen atoms and
encompass carboxyl, ketone, epoxy, and hydroxyl groups, which transmit
negative charges when in liquid solutions, in a broad pH range.

4. Biosorbents efficiency (the case of chitosan)

Biopolymers such as chitosan and chitin have emerged as effective adsorption
solutions [44]. Chitosan is useful as it possesses amino and hydroxyl groups,
which may act as the active sites [50] and is also nontoxic, noncorrosive, and
safe to manage [51]. The main advantage of chitosan is that it is able to bind
dyes in low concentrations as opposed to metal salts and is also effective in
cold water. Chitosan composites are cost-effective due to their easy prepara-
tion requirement of cheaper chemical reagents. The removal of even the small
amounts of pollutants is very expensive, so traditional methods are not prac-
tical [3]. Currently, multiple adsorption methods based on chitosan composites
are being researched as a substitute for the pricier conventional methods [52].

5. Agricultural waste efficiency

Agricultural solid waste such as leaves, fruits, seeds, and peels, as well as
forest waste materials such as sawdust and bark, have been widely used as
adsorbents for dye removal [53]. Their availability reaches extremely high
quantities, and their physicochemical attributes make them useful as sorbents.
Several agricultural solid wastes are effective in removing both cationic and
anionic dyes; however, they require activation [54,55]. The most significant
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factor modifying the adsorption is the pH; a high pH allows for the adsorption
of cationic dyes, whereas a low pH is more effective on anionic dyes. [54]. A
review by Demirbas [15] provided a comprehensive list of agricultural waste
and a variety of otherwise unwanted plant parts that provide a cheap and
renewable supplementary source of AC. These materials have little to none
economical value and would commonly be problematic to dispose, they are
used in natural or modified form for dye removal. The most commonly used
forms of agro-waste include pine wood, corn cob, nut shells, fruit peels,
bamboo, bark [15]. Furthermore, they have desirable physicochemical attri-
butes that render them highly efficient and easy to renew with or without being
treated (they occasionally might need to be grounded, washed, and/or dried)
which lowers the production and energy costs [56]. An example of agro-wastes
with potential are banana and orange peels that can be used as adsorbents for
the removal of copper, zinc, carbon dioxide, nickel, and lead cations from
water. The residues of the peels can be treated and modified to become ad-
sorbents due to their large surface areas, swelling capacity, strength, ease of
use, and ability to adsorb hazardous pollutants.

6. Economics of adsorption

Cost is a significant factor when comparing sorbent substances. The adsorbent
cost is influenced by a variety factors, such as availability, type (natural,
agricultural, industrial, synthesized, by-products, etc.), conditions, recycle,
stability, production country (in terms of development stage [57,58]. Due to
the continual changes in adsorption, the scientific community has concentrated
its efforts on developing a cheap, simple, and eco-friendly process for the
removal of dyes. Traditional synthesis processes have many limitations due to
their environmental risks and high costs [17]. Therefore efforts are concen-
trated toward establishing less expensive, more effective, and scalable sepa-
ration processes as required by the industry. The feasibility of using low-cost
agriculture-based waste materials has been widely studied, and biosorption
technology has been found to be a sufficient alternative for the removal of
heavy metals from wastewater [59]. Agricultural wastes are cheaper and often
environmentally friendly due to their chemical attributes, abundancy,
renewability, low cost, and efficiency for both organic and inorganic waste
treatment [60].

7. Materials and methods

The information was collected from a variety of sources, primarily via
in-person interviews with the managers of two Greek chemistry laboratories in
Greece. The managers were chosen due to their expertise in the field of
adsorption. The focal point of the interviews was the identification and
analysis of the characteristics of “popular” adsorbents.

The impact of raw materials cost on the adsorption process Chapter j 1 5



The advantage of personal interviews lies in the ability to observe the in-
terviewee’s expressions and feelings as well as listen to their responses unob-
trusively. The chosen approach consisted of unstructured interviews since they
are more flexible for all participants, as proposed by Gubrium and Holstein [61].
Furthermore, there is also the chance to further discuss specific “elite” issues of
importance that might be brought up during interviews [62,63]. The term “elite”
refers to experts on specific subjects [64]. The basic issue in such cases is to
reach a balance between proper reporting of research outcomes and the potential
risk of disclosing interviewees’ identities, as opposed to hiding their data for less
exposure but higher risk of results being disputed [65]. The confidentiality is
necessary to protect the interviewees. Anonymity permits participants to express
more freely [66]. For this specific research, the respondents are male professors.
The interview was detailed, taking up more than 40 min. Based on the re-
sponses, we determined two important parameters affecting costs. These consist
of the raw material and the adsorption energy costs.

Recipe selection: In order to further explore the adsorption phase and
identify the attributes shaping the studied adsorbents, we performed a litera-
ture search to find the corresponding recipes. The most cited ones were chosen
for each adsorbent, so that the cost parameters could be calculated.

Raw material price: The first cost factor to be estimated is the raw ma-
terial cost. These costs refer to the necessity for the adsorption process re-
sources. Chesbrough [67] proposes a new way of cooperation of various
stakeholders in the value chain in order to gain new knowledge and technol-
ogies. The analysis included the compilation of market prices for the materials
based on information of various vendors worldwide.

Energy cost: The second cost factor consists of energy costs. This refers to
the energy utilized for the various stages of adsorption. Electricity costs are
estimated based on the energy price in Greece for 2019 (0.194 Euro/kWh).
These prices are provided by the Public Power Corporation S.A., Hellas [68].
The cost in Euros has been calculated as the energy cost in kWh multiplied by
the price of energy in Greece as Euros per kWh.

Maintenance cost and labor cost: These costs are not included because
corresponding data are not available for the adsorption phase.

8. Results and discussion

The effects of different parameters including solution pH, biosorbent’s dosage,
initial dye concentration, and contact time were studied. Table 1.1 attempts to
provide an up-to-date list on adsorption properties or recycled and reused
waste by-products.

A combination of multiple adsorbents (Table 1.1) has been found to yield
promising results; however, this comes with the disadvantage of increased
costs. Therefore, in spite of their effectiveness and suitability, certain financial
considerations might limit the use of costly adsorbents.
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TABLE 1.1 Synthesis recipes of the adsorption of dyes using different

adsorbent (dosage: 1 g of adsorbent per 1 L of adsorbate solution).

Adsorbent T(�C) pH

Contact

time

(min)

Removal

(%) Pollutant Ref

Graphene oxide
(GO)

65 3 180 55% Dye [69]

GO-Chm 65 3 180 81% Dye [69]

Magnetic activated
carbon

65 10 300 68% Dye [70]

CD-MIPs 25 2 225 62% Dye [71]

CHI-MIPs 25 2 225 62% Dye [71]

Chitosan
biosorbent

65 12 120 97% Metal [72]

Chitosan
biosorbent

65 4 120 85% Metal [72]

Coffee biosorbent 25 5 180 UCR: 70%;
TCR: 77%

Metal [73]

Coffee biosorbent 25 5 180 UCR: 60%;
TCR: 62%

Metal [73]

GO/CS 65 6 150 93% Metal [74]

GO/mCS 65 6 150 96% Metal [74]

GO 65 3 200 53% Drug [75]

CSA 65 3 200 68% Drug [75]

GO/CSA 65 3 200 93% Drug [75]

Activated carbon 65 3 B0: 50%; B1:
80%; B3:
82%;
B4: 83%; B5:
65%

Drug [76]

Cs 65 10 50% Drug [77]

CsNCB 65 10 78% Drug [77]

CsSLF 65 10 82% Drug [77]

Gho 65 2 180 PRO: 68%;
ATL: 93%

Drug [78]

ATL, atenolol; CD-MIPs, b-Cyclodextrin MIPs; CHI-MIPs, chitosan MIPs; CSA, chitosan grafted with

poly(acrylic acid); CsNCB, chitosan grafted with N-(2-carboxybenzyl groups); CsSLF, chitosan grafted

with sulfonic groups; PRO, propranolol; TCR, treated coffee residues; UCR, untreated coffee residues.
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In general, a potential low-cost dye adsorbent should show (1)
effectiveness in removing a wide range of dyes; (2) high ability and rate of
adsorption; (3) differentiation in selectivity based on concentration; and (4)
tolerance of a variety of wastewater attributes. Low-cost adsorbents possess
certain physical and chemical characteristics such as pore size, surface area,
and physical strength, as well as a range of advantages and disadvantages that
affect their efficiency in treating wastewater [44].

Raw material costs are considered “hard” costsdtherefore any savings in
these will allow for better profits directly. The high prices of raw materials
makes stakeholders nervous about the development and exploitation of new
technologies and how those can be affected by fluctuations in price and
availability [30].

The results from Table 1.2 reveals that only the raw material cost actually
matters for the adsorption phase. The reduced consumption of raw materials
could result in lowered costs and other benefits, including an improved
laboratory image and working conditions.

This work presents an initial attempt to optimize the dye removal during
the adsorption stage; however, an effective methodology addressing the

TABLE 1.2 Raw materials and energy costs in selected recipes.

Material produced Raw materials

Raw materials

cost per 1 g of

final product

(V)

Energy

cost

(V)

Recipe

cost

(V)

Polymer/graphene
oxidedsynthesis of
magnetic
nanoparticles

KMnO4 (>99.0%);
graphite flakes; H2SO4

(95%e98%); H2O2

(30 wt%)

5.75 5.02 10.77

Polymer/graphene
oxidedsynthesis of
magnetic chitosan
(Chm)

FeCl2 4H2O (p.a.
>99.0%); chitosan (high
molecular weight); FeCl3
6 H2O (reagent grade,
97%); glutaraldehyde
(50 wt% in water; acetic
acid solution (>99%)
KMnO4 (>99.0%);
graphite flakes; H2SO4

(95%e98%); H2O2

(30 wt%)

2.4 3.35 5.75

Polymerdsynthesis of
sulfonate-grafted

Dichloroacetic acid
(>99%); formamide

3.22 3.89 7.11
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removal of all kinds of dyes in an inexpensive manner has been found. The
outcomes suggest that there are some cheaper adsorbents that allow for higher
dye removal rate, as shown in Table 1.1. Such low-cost adsorbents arose as an
alternative option, and they support practical solutions to toxicity-related
issues.

9. Conclusions

This chapter has presented a broad range of different adsorbents that can be
utilized as low-cost adsorbents. The usage of such cheap adsorbents is highly
advisable due to not just their low cost but also availability, renewability, and
effectiveness. The advantage of low raw material cost should be further
explored in terms of regeneration, design, and confinement of the waste

TABLE 1.2 Raw materials and energy costs in selected recipes.dcont’d

Material produced Raw materials

Raw materials

cost per 1 g of

final product

(V)

Energy

cost

(V)

Recipe

cost

(V)

chitosan adsorbent
(CsSLF)

(>99.5%); chitosan (high
molecular weight);
glutaraldehyde (50 wt%
in water); acetic acid
solution (>99%)

Polymerdsynthesis of
N-(2-carboxybenzyl)-
grafted chitosan
adsorbent (CsNCB)

Chitosan (high
molecular weight);
glutaraldehyde (50 wt%
in water); acetic acid
solution (>99%);
2-carboxybenzaldehyde
(97%); sodium
borohydride (>96%)

11.39 0.84 12.23

Polymerdsynthesis of
cross-linking chitosan
adsorbents

Chitosan (high
molecular weight);
glutaraldehyde (50 wt%
in water); acetic acid
solution (>99%): 1L

2.09 4,29 6.38

Graphene
oxidedsynthesis of
adsorbents according
to a modified
Hummers method

KMnO4 (>99.0%);
graphite flakes; H2SO4

(95%e98%); H2O2

(30 wt%)

5.57 2.47 8.04
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material for improved effectiveness and recovery rates. The outcomes of this
work could help in establishing a well-founded, environmentally friendly,
simple, and cost-effective process for green synthesis especially with the
constant developments in its application fields.
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