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Chapter 7

New trends in molecular
imprinting techniques

Ramonna I. Kosheleva, Athanasios C. Mitropoulos and
George Z. Kyzas*
Hephaestus Advanced Laboratory, Department of Chemistry, International Hellenic University,

Kavala, Greece

*Corresponding author

1. Introduction

Molecular imprinting technology (MIT) is an umbrella term for all the
methods and approaches involved in molecularly imprinted polymer (MIP)
synthesis process [1]. The as-synthesized MIPs can be implemented in many
fields including biological and electrochemical sensors [2,3], separation and
adsorption technologies [4] as well as sample preparation applications mainly
in analytical chemistry for solid-phase extraction (SPE), microextraction, and
others. First in 1931 by Polyakov and then in 1949 by Dickey [5], the effect of
participating solvent in polymerization process and the resulting affinity of the
synthesized polymer to the “pattern molecule” led to a more elaborative
investigation on the topic by researchers globally. The MIP technology gained
popularity during the last two decades, acquiring its present sense through an
enormous number of studies and review articles. In fact, a brief research
though scientific publications database (ScienceDirect and Scopus) of related
literature showed that a great amount of work done is within a time frame of
2015 to present, with 2017 being the year of the most published studies on the
topic. Also, a closer review of the available literature can lead to estimations
regarding the trends both in synthesis and evaluation of MIP. In this respect,
the specific chapter aims to cover the recent development within MIP tech-
nology, providing examples from recently published works.
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2. Synthesis of molecularly imprinted polymers

The synthesis of MIP is considered an easy and effective process requiring (1)
a template which is essentially the target molecule, (2) one or more functional
monomer(s), (3) cross-linker(s), (4) initiator(s), (5) a porogenic solvent, and
(6) a solvent for template extraction after polymerization of the complex
(Fig. 7.1). The resulted material is a three dimensional polymer with formed
cavities in shape and size that can bind and take in, via functional groups of the
polymer, only a molecule with the same specifications. Thus, MIPs are
characterized by high degree of selectivity for a predetermined compound,
rapid mass transfer and kinetics, low-cost and easy synthesis procedure for
trace analytes binding. Detailed description of the common synthesis protocol
is given in multiple literature reviews [7], textbooks [8,9], and studies [10],
therefore it is omitted from the specific work.

A successful metaphor to describe this mechanism is lock and key
hypothesis that was postulated by Emil Fisher in 1894 in his work upon
enzymes selectivity [11]. Actually, MIPs are artificial materials that mimic
such behavior of natural occurring processes (i.e., antibodies) being though
superior due to the fact that they provide [9] the ability to bind even com-
pounds that are not present in nature while the number of binding sites is

FIGURE 7.1 Schematic representation of molecularly imprinted polymer synthesis [6].
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increased by many orders of magnitude. Fig. 7.1 represents schematically the
whole process and outcomes of each step.

In MIP technology, many subgroups can be formed under various criteria; a
classification could be done, for example, according to the MIP synthesis
approach (solid-phase method, polymerization, surface imprinting, etc.) or the
resulted MIP type (inorganiceorganic molecularly imprinted polymer (IMIP),
magnetic molecularly imprinted polymer (MMIP), multitemplate MIP, nano-
particles composite molecularly imprinted polymer (MIP-NP), etc.), the list
can be endless due to versatile nature of MIPs. Another way for MIP cate-
gorization could be by application or target molecule. So ever, MIP technology
is one of the emerged technologies with rapid development. The amount of
studies conducted so far indicates the maturity level of MIT and hence MIP.
The present work gives an overview of hot topics of the moment and the
conducted studies upon the latest trends. Table 7.1 presents some of the new
trends of this technology.

3. Inorganic molecularly imprinted polymer

According to the recent literature, a small yet portion of scientists have shown
interest in using hybrids of organiceinorganic compounds in MIP synthesis
instead of pure organic ones. This can be attributed to the fact that such hybrid
materials can overcome some drawbacks. The as-synthesized MIPs, with
traditional organic monomers, suffer from low performance in aqueous media,
and many times there are difficulties of obtaining uniform particle size, some
of the most important aspects considered especially in biological applications
such as drug delivery [25] and therapeutic/diagnostic procedures [26]. For the
latter case, “shell-” and “core-” like MIPs are implemented where “shell” is
referred to imprinting the surface layer of nanosphere-shaped polymer [27]
while “core” usually constitutes from a silica-based [28] or Fe2O3 [29]
nanoparticles.

The embedment of inorganic particles into organic matrices leads to high-
quality materials regarding mechanical strength, thermal and chemical sta-
bility, high selectivity performance, and other properties prerequisite for
adsorption applications. Hence, this new generation of MIP materials is not
restricted only to biological applications, but they are used in extend as ad-
sorbents for effective decontamination of aqueous media. A large number of
studies has been conducted upon investigation of IMIPs efficacy as adsorbents
in many aspects including environmental [30], food processing [31], drug [32],
and valuable metals recovery technology [33] and others.

Immobilization of template combined by solid-phase method for MIP
nanoparticles synthesis has been first introduced in 2013 by Poma and asso-
ciates [34]. The team achieved to fully automate the synthesis process in a
device producing reuseable immobilized templates eliminating extreme
operation conditions. Since then, the specific method has been utilized
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TABLE 7.1 Few examples of new trends in molecular imprinting technology (MIT).

MIP type Approach

Target

molecule

Monomer/cross-linker/

initiator Chain transfer agent Porogen Solvent References

IMIP-NP Solid phase Vancomycin MAA/EGDMA, TRIM/DABE PETMP [12]

IMIP-NP Solid phase IBA [13]

IMIP-NP Solid phase 4-Ethylphenol 4VP, FER/EDMA, RIM/
INEFERTER

Pentaerythritol tetrakis
(3-mercaptopropionate)

Acetonitrile,
tetrahydrofuran

e [14]

IMIP-NP Solid phase Trypsin Nipam, BIS, TBA, NAPMA,
AA/BIS, EGDMA, TRIM,
NAPMA, AAm/ammonium
persulfate aqueous solution,
TEMED

e e e [15]

IMIP-NP Solid phase THC BIS, EGDMA, TRIM, NAPMA,
AAm/PETMP, INIFERTER

DMF,
ACN

[15]

MIP Bulk
polymerization

Ketoprofen 2-Vinylpyridine/ethylene glycol
dimethacrylate, 1,10/azobis
(cyclohexanecarbonitrile)

e Toluene/
acetonitrile

e [16]

Multi-
template
MIP

Bulk
polymerization

Naproxen,
ibuprofen and
diclofenac

2-Vinylpyridine/ethylene glycol
dimethacrylate

e Toluene e [17]

SPI-MIPs Bulk
polymerization

Spiramycin MAA/EGDMA/AIBN e e Methanol [18]



SBA-15@MIP Surface molecular
imprinting

dicyandiamide DCD/EGDMA/AIBN e Tetrahydrofuran-
ethanol

Methanol [19]

SiO2@MIPs Surface molecular
imprinting

17b-Estradiol APTES/CTAB/BTEB e Ammonia Na2CO3 [20]

Sol-gel MIPs Surface molecular
imprinting

Gossypol APTES/TEOS/- e Acetic acid Methanol/HCL [21]

MMIPs Precipitation
polymerization

CDNB EGDMA/MDI/- Phloroglucinol Tetrahydrofuran Methanol/acetic
acid

[22]

MMIPs RAFT polymerization BPA 4-Vinylpyridine and
b-CD/TRIM/AIBN

e e Acetic acid/
methanol

[23]

MMIPs Surface polymerization Folic acid Acrylonitrile/
EGDMA/AIBN

e Ethanol Methanol/acetic
acid

[24]

IMIPs, inorganiceorganic molecularly imprinted polymers; MIPs, molecularly imprinted polymers; MMIPs, magnetic molecularly imprinted polymers.



successfully by many other researchers for various purposes. Commonly,
immobilization of the template is achieved by grafting covalently organic
molecules on an inorganic substrate either heterogeneously or homogenously
[35].

A silica-based hybrid was evaluated for Hippuric acid (HA) extraction by
solid-phase method [36]. The inorganic part of this composite material was a
silica-based compound, and the target molecule recognition site was formed
by 3-aminopropyl trimethoxysilane as the functional monomer cross-linked by
tetraethoxysilane while methacryloxypropyltrimethoxysilane provided the
ability of MIP surface acrylamide coating. The resulted material is charac-
terized as restricted access material (RAM) due to the formation of hydrophilic
barriers-like network. Furthermore, Arabi et al. [36], performed routine MIP
characterization techniques for morphological evaluation including trans-
mission electron microscope (TEM), scanning electron microscope (SEM),
and FTIR as well as investigations of MIP performance by applying SPE of
HA in a cartridge packed with the resulted material. After optimization of the
methodology, the template to monomer ratio was found to be 1:5. Chroma-
tography analysis of simple MIP was compared with that of RAM-MIP which
demonstrated higher performance and repeatability while its reusability was
determined to be high after a number of SPE cycles.

Enantiomers of albendazole sulfoxide (ABZSO), a drug usually used in
veterinary as an antihelminthic for sheep, were successfully extracted from
water by a poly(methacrylic-acid)silica-based IMIP. According to the study of
Anacleto et al. [30], the so-named MIP-poly(MAA)-SiO2 was synthesized and
evaluated and compared with nonimprinted polymer (NIP) for its adsorption
capacity, kinetics, and the effect of pH for the optimal performance. The re-
sults of the analysis showed that adsorption equilibrium was reached after
20 min of contact in aqueous solution of pH 9.0, while pseudo-second-order
equation was that best fitted to kinetics analysis giving the same R value in
both cases. This outcome leads to estimations that both examined materials
adsorbed the target compound onto their external surfaces although at equi-
librium MIP-poly-(MAA)-SiO2 adsorbed up to 70% of enantiomers while NIP
adsorbed only 50%. Additionally, the agreement with Langmuir isotherm in-
dicates that monolayer molecule adsorption was performed giving information
on adsorption capacity which was 140 and 35 mg/g for MIP-poly(MAA)e
SiO2 and NIP-poly(MAA)-SiO2, respectively. Finally the specific work
concluded that such MIPs can be implemented efficiently for separation and
removal purposes of pharmaceuticals in water, providing reusability of the
material as well.

In another work, organiceinorganic MIPs were synthesized on selenium
(Se) nanoparticles for cholesterol binding. Specifically, two different mono-
mers were polymerized namely 2-hydroxyethyl methacrylate (HEMA) and
ethylene glycol dimethacrylate (EGDMA) and stabilized by poly(vinyl pyr-
rolidone) (PVP) by Polyakova et al. [37]. Pickering microemulsion was used
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as synthesis method; the resulted sorbent was evaluated by chemical and
morphological evaluation techniques. In order to compare, same examination
was done for NIP as well. SEM micrographs revealed that synthesized MIPs
had better porous microstructure while adsorption properties investigation
indicated that the initial concentration of cholesterol plays a significant role in
material’s overall performance. Langmuir isotherm model describes better the
adsorption process which seems to be monolayer deposition of the target
compound, hence material’s imprinted surface can be considered as advantage
for cholesterol extraction from blood plasma.

4. Magnetic molecularly imprinted polymer

MMIPs are a new class of materials attracting an increased attention during
past years mainly due to their easier after-treatment processes which are much
more convenient and effective than those of conventional MIPs. An additional
factor for their preference is the selectivity, for the target molecule, that they
perform [38]. As it is rational, MMIPs are synthesized following surface
imprinting technique where the polymeric surface layer of coated magnets is
imprinted by the target analogue. Specifically, as a common methodology,
emulsion polymerization take place in order to obtain core particles covered
with imprinted shells [39]. A schematic representation of a common utilized
methodology for MMIP synthesis is illustrated in Fig. 7.2 [39]. Besides many
other advantages of coreeshell structured materials, the obtained uniformity
regarding the size and shape of the resulted particles as well as the greater
overall efficiency makes this approach highly attractive in many aspects.

High internal phase emulsion polymerization by Pickering method was the
methodology of choice for porous MMIP tailoring used for l-cyhalothrin (LC)
adsorption [40]. After its synthesis, material was evaluated regarding
kinetics, adsorption capacity, and selectivity by competitive recognition test.
The adsorption capacity was investigated under no vibration and although the
equilibrium was reached after 2 h, the amount that could be adsorbed was
roughly determined at 1 h of the contact with the pesticide. Isothermal sorption
measurements at ambient temperature estimated the adsorption capacity to
404.4 mmol/g, while from the thermodynamic point of view, the one-layer
molecular deposition occurred spontaneously. Finally, in order to qualita-
tively define the MMIP selectivity, one similar to l-cyhalothrin compound,
namely fenvalerate (FL), and a nonanalogue such as diethyl phthalate (DEP)
were examined as well. The test revealed that the MMIP presented higher
affinity to LC and its analogue while no selectivity to DEP was observed. The
authors attribute this behavior to the fact that LC and FL is bound to MMIP by
hydrogen bonds while DEP lacks them, limiting its ability to get into the
formed cavities despite its small molecule.

Zhang et al. [41] managed to successfully bind salicylic acid (SA) onto
coreeshell MMIP. In fact, comparative experiments of synthesized MMIP by
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solegel polymerization and the same not imprinted material demonstrated a
greater binding capacity by many times while its recovery was up to 108%.
Therefore the particular synthesis strategy is suggested by the research team as
a multifaceted method for production of materials for harsh and complex
environments.

Another study on coreeshell structured MIP nanoparticles, conducted by
Wu and his team [42], proposes the synthesized MMIP for tetrabromobi-
sphenol A (TBBPA) extraction from water. Fe3O4 nanoparticles were coated
by imprinted SiO2, and evaluation of the material revealed its high efficiency
toward TBBPA removal. Specifically, MMIP adsorbed 2.3 times more of the
target compound than MNIP at a minimal equilibrium time of 40 min pre-
senting also high reusability, while its stability did not show to decrease even
after seven cycles of TBBPA extraction by adsorption.

FIGURE 7.2 A schematic illustration of coreeshell magnetic molecularly imprinted polymer

synthesis. Fe3O4 nanoparticle is used as core and coated with a silica shell. After processing with

tetraethoxysilane (TEOS), Fe3O4@SiO2 is produced. Further, reaction with

3-aminopropyltriethoxysilane (APTES) take place in order to obtain amino groups on its surface,

while further reaction with glutaraldehyde (GA) leads to surface modification by creating alde-

hydes. Then, a 3D polymeric structure is formed under siloxane copolymerization by APTES and

octyltrimethoxysilane after target compound had been immobilized via covalent approach onto the

modified surface. The created network constitutes protein complex in which protein is removed

leaving cavities of specific characteristics concerning shape, size, and functionality [39].
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5. Dummy-template molecularly imprinted polymer

Environmental safety is one of the most significant concerns in many fields of
science. Green technology and all the subsequent aspects have been developed
in recent years and the number of firm supporters is ever increasing. In the
field of chemistry, some of the major issues arise are the logical use of
reactants, the minimization of energy consumption, the reusability of the
produced material, and the optimization of the whole process; so it could be
considered eco-friendly and safe to be implemented [43]. In this sense, the
participation of computational chemistry in MIP synthesis process is essential.
During the past years many works have been conducted and published sup-
porting computational approach for synthesis optimization. In most of the
cases, computational tools such as density functional theory and molecular
dynamics [10] are used for an efficient screening of monomers in order to find
the suitable for the intent use, thus avoiding the generation of unusable waste
like it happens when trial-and-error approach is implemented. MIPs synthesis
is considered easy to do, but there are some steps of the process that are crucial
for the final result; template manipulation is one of them. The main advantage
of an MIP is its capability to recognize even traces of a particular compound,
that is why it is preferred for sample preparation in already mentioned
methods. In many cases, the target compound may be toxic or valuable enough
so any leakage from the MIP matrix is undesirable. To solve this problem,
dummy templates are used instead of original compounds. As a dummy
template for MIP synthesis (DMIP) is an analogue to the target molecule;
another molecule of similar shape, size, and functionality but not toxic or
valuable.

In order to overcome low selectivity for SA of MIPs due to its weak
hydrogen bonding ability with conventional monomers, Xiang et al. [44] used
ionic liquid as functional monomer for polymerization of proposed MIP in
aqueous medium. As template they replaced SA with a dummy compound
which was benzoic acid while MCM-48 was the porous substrate. During this
study, parameters such as the kind of template, the analogy of templa-
teemonomerecross-linker, and porogen selection were optimized for
synthesizing an MIP of high adsorption capacity and improved selectivity. The
resulted material was a hollow porous MIP presenting better properties than
any reported MIP fabricated traditionally or by surface imprinting technology.
The affinity of fabricated MIP to SA was determined by means of adsorption
capacity and imprinting factor. Imprinting factor was the ratio of adsorption
capacity of MIP and an NIP as reference material, and it was found 5.61 with
adsorption capacity of MIP being 29.75 mg/g. BET analysis provided infor-
mation about surface area which was 543.9 m2/g, while kinetics test showed
that reaction equilibrium was reached after 25 min of contact following
Freundlich equation and described by pseudo-second-order model. Finally, the
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recovery rate was found to be up to 94.5%, implying the specific MIP can be
applied successfully for SA extraction.

One additional challenge in analytical chemistry is the ability for a material
to be multifunctional, in other words, to possess the ability to recognize and
bind more than one compounds simultaneously. MIP offers this opportunity by
suitable design and optimization. For example, Song et al. [45] synthesized a
dual template MIP for detection of 16 compounds, 8 fluoroquinolones (FQs),
and 8 sulfonamides (SAs). As dummy templates, pipemidic acid (PA) and
nalidixic acid (NA) were selected for FQs while sulfanilamide (SA) and sul-
fabenzamide (SB) were found to be suitable for SAs. Theoretical results of
simulation modeling tool and experiments were compared in order to examine
the performance of the fabricated MIP for FQs and SAs affinity. Then the
optimized materials were used for mentioned drugs detection in pork and
chicken meat by SPE column as sample preparation method for ultra perfor-
mance liquid chromatography. The results obtained indicated the good
potentials of the specific MIP with maximum drug adsorption at 74.2 mg and
recovery up to 99% even after eight times of column usage. As it is implied in
Fig. 7.3, the prepared MIPs present high affinity to specific analytes that can be
observed from high recovery of the target compounds while other competitor
compounds are not recognized by any of the MIPs.

In some cases, synthetic template preparation is restricted by high cost and
complexity, hence other solutions should be provided. One clever way to
overcome such issues is to structurally divide the target compound producing
fragments that are same or similar to it like He et al. [46] achieved in order to
selectively extract gonyautoxins from seawater by SPE. The research team
followed a multitemplate MIP method for dummy template preparation using
fragments of dummy analogues (2,4,6-triaminopyrimidine, 4-hydroxy-
2-butanone, and imidazole). Bulk polymerization was the selected approach

FIGURE 7.3 Recoveries of fluoroquinolones and SAs by four prepared molecularly imprinted

polymers compared with blank nonimprinted polymer material [45].
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for MIP synthesis involving prepolymerization by sonication for template and
monomers dissolution. After this process, cross-linkers were added and mixed
by stirring. The template was removed by a mixture of methanol/acetic acid of
9:1 in a Soxhlet after the polymerization was completed. The most significant
remarks of this study was the results obtained by comparison of the fabricated
multitemplate MIP with that of monotemplate, prepared in the previous work
of the same team for 1 and 4 gonyautoxins isolation. It was revealed that MIP
prepared by multitemplate method had lower adsorption capacity than that
prepared by monotemplate method, authors attribute this outcome to incorrect
combination of template fragments into the MIP synthesis leading to binding
sites not suitable for the specific analyte.

The above spectra (Fig. 7.4) make clear the high selectivity of an MIP for
acrylamide detection and removal from food. Specifically, Ning et al. [47],
fabricated for the first time MIP selective to acrylamide. The difficulty in such
case is that, usually, acrylamide is used a cross-linker making restrictions to its
manipulation as template. Moreover, acrylamide is toxic and cancerogenic,
hence its usage is preferred to be avoided. Instead acrylamide, the mentioned
group introduced an analog to acrylamide; the so-named propionamide. The
most remarkable of the work, was that the as-synthesized magnetic graphene
oxide MIP (AMDSMIPsGOFe3O4) presented high selective recognition of the
target compound even from fried foods, with high recovery yield.

FIGURE 7.4 HPLCeUV chromatograms of food samples. The collected spectra shows (1) not

spiked, (2) spiked with 4 ng/g acrylamide and without extraction, (3) spiked with 4 ng/g acryl-

amide and with AMDSMIPsGOFe3O4 extraction, and finally, (4) spiked with 4 ng/g acrylamide

and the remaining solution after extraction [47].
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6. MIP performance

6.1 Characterization and performance evaluation methods

Materials such as MIPs can be characterized by means of many methods
including morphological and chemical evaluation. The most common tech-
niques for morphological characterization of MIPs are TEM and SEM, while
chemical analysis is provided by methods of liquid chromatography, FTIR,
mass spectroscopy, and others. Binding efficiency can be determined by
sorption test of the examined material, providing information about its kinetics
and adsorption capacity of the target pollutant onto its surface, while surface
properties can be further estimated by methods such as N2 porosimetry in
order to obtain the surface area. However, MIP properties are significantly
affected by some factors both form the perspective of selected reagents and the
followed synthesis approach. Following, effect of porogenic solvent, template
removal method, and synthesis process on the resulted MIPs are presented by
some examples of the recent literature.

6.2 Effect of the porogenic solvent on MIP efficiency

Porogen plays an important role within MIP synthesis process. Porogen is
responsible not only for dissolving properly all the agents during polymeri-
zation but also for the development of porous structure of the MIP. Addi-
tionally, porogen must not interact with the formed templateemonomer
complex retaining its stability [49]. Thus, reagent used as porogen must be
selected thoughtfully for MIP synthesis regarding the desired results and MIPs
usability.

As it was mentioned in a previous section, green chemistry perspectives are
appealing to chemists worldwide, therefore a lot of focus has been put on
finding more eco-friendly, safer, and lower cost solutions whenever it is
possible. Such an example is the usage of ionic liquids instead of conventional
reagents in MIP synthesis process. Due to their nature, ionic liquids among
other properties demonstrate nonvolatility, nonflammability, and also they are
highly dispersible in inorganic/organic solvents, thus they have been imple-
mented in recent studies substituting conventional monomers or/and cross-
linker [50] in bulk polymerization or as functional substrate in surface MIT
[51]. Ionic liquid can also be successfully used as porogen, adding special
characteristics to MIPs. As an example, Booker and her team have conducted a
series of studies upon the performance of ionic liquids as porogen within MIP
synthesis for trans-aconitic acid 1 and cocaine 2. Investigations of porogen
volumes and process temperature conditions as well as polymerization method
were included. Comparisons with MIP prepared in volatile organic carbon
VOC solvents such as CH3CN were performed as well. In the initial study,
acetonitrile and chloroform porogen performance for MIP preparation of
aforementioned target compounds was compared with that of (BMIM) (BF4)
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and (BMIM) (PF6) ionic liquids for the same purpose. Two different
polymerization methods were implemented, namely bulk and precipitation
polymerization at 5 and 60 C. Remarkably, it was revealed that conventional
porogens failed to develop 3D polymer complexion at low temperature in both
polymerization methods. In contrast, ionic liquids as porogen achieved to form
MIP and by temperature increase the polymerization rate was found to be
significantly greater than the respective of conventional ones. Subsequent
study of the same research team [48] generated additional MIPs characterized
by SEM as well. Cocaine MIPs were prepared as monolithic when 5 mL of
porogen was used and by precipitation method (25 mL of porogen). Obtained
MIP characterization by SEM (Fig. 7.5) supports the results concluding that
porogen nature impacts significantly MIP morphology.

As it was mentioned, MIPs are widely used in sensor technology for trace
detection and monitoring as they are a good alternative of biological recep-
torebased methods whose usage is restricted by their stability and cost. A
carbon paste electrode with appropriate MIP was proposed as sensor for his-
tamine monitoring by Akhoundian et al. [52]. In their study, two different
porogen solvents were used in MIP synthesis; acetonitrile and methacrylic acid
following bulk polymerization method. For determination of porogen influ-
ence of MIP selectivity, optical rebinding test was performed by UV-VIS
spectroscopy, after the MIP/histamine (at concentrations from 0 to 1 mM for
4 h of contact at ambient temperature) suspension was centrifuged, for both
MIPs and their respective NIPs (Fig. 7.6).

The obtained results reveal that MIP synthesized in chloroform as porogen
solvent performs better than MIP prepared in MeCN. This is attributed to the
different polarities of the two porogens and to the fact that histamine binding is
based mainly on hydrogen bonds in the presence of the methacrylic acid (as
monomer) and chloroform (as porogen) combination. The latter is confirmed

(A) (B) (C) (D)

(G)(F)(E)

FIGURE 7.5 SEM images of cocaine-imprinted polymers prepared in 5 mL porogen at 60 and

0 �C [48]. (A) CHCl3-60-5; (B) [bmim]BF4-60-5; (C) [bmim]PF6-60-5; (D) [bmim]HSO4-60-5;

(E) [bmim]BF4-0-5; (F) [bmim]PF6-0-5; (G) [bmim]HSO4-0-5.
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by Trikka and her team [54] investigating binding and recognition properties
of MIPs by conducting combinational NMR and UV-VIS spectroscopy
analysis.

Supercritical fluids implementation is an emerged technology and can be
considered as another route for meeting green technology requirements. To
this direction, supercritical fluid such as scCO2 has recently been used as
porogen solvent for MIP prepolymerization phase. Due to its inherent char-
acteristics, scCO2 has been reported as a promising solution for sustainable,
clean and with low environmental impact solvent. Moreover, scCO2 apolar
nature makes it perfect for porogen solvent while it does not interact with
templateemonomer complex resulting in MIP of controlled structural prop-
erties [55]. In order to fabricate a bisphenol A selective MIP, Rebocho and
group synthesized a ferrocenyl-based MIP [56]. The polymerization process
was occurred in a specially designed cell were all reactants were mixed at CO2

environment with the assistance of sonication bath to ensure solids’ dissolution
(for detailed methodology refer to specific work).

6.3 Template removal methods

The method of template desorption is crucial for the optimal performance of
the fabricated MIP. Many methods have been developed to efficiently remove
template from the formed 3D network leaving the desired cavities for target
molecule capturing. Lorenzo and Carro [57] conducted a replete review of
MIP template extraction methods providing information about technologies up
to 2011. Although MIT is a rapidly developed field with new materials and
composition methods emerging every now, template extraction seems not to
follow the same tempo. As it is well known, a successful template removal
contributes to overall success of MIP synthesis. If template remainings are still
present when prepared MIP is applied, then the adsorption capacity is

FIGURE 7.6 Rebinding isotherm of histamine examined by UV-VIS spectroscopy for (A) MIP1,

NIP1; (B) MIP2, NIP2 in 50 mM PBS buffer (pH 7.4). MIP1 and MIP2 (corresponding NIPs) were

prepared in CHCl3 and MeCN, respectively [52].
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decreased due to lower number of available binding sites (some of the binding
sites are occupied with template). Additionally and especially for applications
that requires high accuracy such as analytical methods (SPE, MSPE, etc.), a
phenomenon called “template bleeding” may cause many problems leading to
inaccurate estimations. Common strategies for this last step of MIP synthesis
procedure include solvent extraction, microwave and ultrasound assisted
extraction, pressurized-liquid extraction, and others. Template removal is
considered as the least cost-effective process of MIP synthesis, thus optimi-
zation is mandatory for achieving good results at as low cost as possible but
also with limited environmental impact. In fact, there are cases that, in order to
remove the template, extreme conditions are applied leading most of the times
to disintegration of formed cavities.

One of the latest work upon the specific topic has been conducted, and
pressurized hot water extraction (PHWE) was proposed as the optimal tem-
plate removal method by Batlokwa [53]. In the specific study, PHWE was
compared with other common methods, namely soxhlet and ultrasonic
extraction. Three MIPs were prepared and colored for distinguishing purposes.
The optimal operation conditions of purge water were 220 �C at 50 bars with a
flow rate of 2 mL/min. Comparative experiment for extraction efficiency (EE)
was performed for all three methods revealing that PHWE not only had the
highest EE percentage (99.6%) for all MIPs but also template wash-off was
achieved in less time. The most interesting and worth to mention outcome of
the specific study is the results from template bleeding test presented in
Fig. 7.7.

As it is shown, PHWE presented no bleeding at all of chlorophyll and
quercetin MIP and only a small percentage for Phthalocyanine of 0.02%
compared to the rest two methods. The conclusion of this study is that water
for template removal is the optimal solution while it is cheaper, readily
available, and does not cause environmental damage as organic solvents do.

FIGURE 7.7 Percentage of template bleeding after the initial wash-off by all three template

extraction methods [53].
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6.4 Other parameters

An interesting perspective about the effect of MIP particle shape has
been postulated by Roy et al. [58] with results that indicate the importance
of MIP shape in selectivity and adsorption capacity. Silver nanoparticles
(AgNPs) were synthesized acquiring spherical, hexagonal, rod, and flower
shape and further modified by surface molecularly imprinting for phenformin
recognition. AgNPs were subjected to characterization by UV-VIS
spectroscopy, X-ray diffraction (XRD), SEM (Fig. 7.8), TEM (Fig. 7.9),
while surface-modified nanoparticles were examined additionally for adsorp-
tion capacity, selectivity of the target molecule, surface area, and electro-
catalytic activity.

(A)

(C)

(E) (F)

(H)(G)

(D)

(B)

FIGURE 7.8 SEM micrographs of silver nanoparticles and the resulted molecularly imprinted

polymers: (A) AgNSs, (B) MIPAgNSs, (C) AgNRs, (D) MIPAgNRs, (E) AgHPs, (F) MIPAgHPs,

(G) AgFLs, and (H) MIPAgFLs.
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In another work of the same team, AgNPs of three different shapes
(hexagonal, cubical, and spherical) were modified with vinyl group and used
as one of the functional monomers in MIP synthesis for tramadol binding after
they were embedded into the shell of Fe3O4 nanoparticle (NP) with high
magnetism. As it was in the previous work, the scope of the study was to
investigate the shape-related efficiency of the resulted MIP-NP for the
morphological characterization SEM, TEM, and FE-SEM. Fig. 7.10 illustrates
the whole synthesis process.

In both studies, results indicate that the shape of used MIP-NPs is crucial
for their performance and this can be attributed to the fact that shape at
nanoscale range alters physicochemical properties of the material as it has
been reported elsewhere [60,61].

(A)

(C)

(E)(E)

(B)

(D)(D)

(F)(F)

FIGURE 7.9 TEM imaging of silver nanoparticles and the resulted molecularly imprinted

polymers: (A) AgNSs, (B) AgNRs, (C) AgHPs, and (D) AgFLs. High-resolution FE-SEM images

of (E) MIPAgHPs and (F) MIPAgFL [58].
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7. Conclusions

Recent published studies have been reviewed and discussed. An attempt to
present new trends in MIP technology and further subcategorized according to
the nature of reagents and MIP utility, namely into IMIP, MIPs as magnetic
particles composites (MMIP), and dummy template (DMIP) ones, was con-
ducted. In addition, factors of major importance in MIP overall performance,
such as porogenic mixture and template removal methods, as well as and other
less common parameters, were highlighted. From the literature review, it was
found that although there is a growing trend for MIP synthesis improvement,
some involving methods (i.e., template removal) lack the appropriate attention.
The latter observation indicates a misbalance between material composition
and implemented methodology progress. In general, researchers have
accomplished some remarkable achievements under a greener perspective.
During the past 3 years, many of MIP drawbacks concerning stability, water
compatibility, higher selectivity, multifunctionality, and many others have
been overcome according to recently reported works.
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